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An examination is made of the laminar boundary layer of low-
temperature plasma on the insulated walls of a MHD generator chan-
nel with arbitrary magnetic field along the channel, perpendicular
to the wall, An example of a boundary layer calculation by this
method is given.

When an electrically conducting, low-temperature
plasma flows in a MHD generator channel, the boun-
dary layers formed near the walls and the electrodes
have an appreciable influence on generator charac-
teristics,

The present pager examines the laminar boundary
layer on the insulated walls with allowance for Hall
current. The method of calculation described enables
some of the poorly founded assumptions used by
Kerrebrock [1] to be avoided, particularly the assump-
tion of local similarity.

1. Statement of the problem. A stream of low-
temperature plasma moves in a rectangular channel
with velocity u (Fig. 1), Two of the walls are in-
sulated, the other two being electrodes. Motion oc-
curs at right angles to the magnetic field, which has
an arbitrary distribution along the channel. The elec-
tric current generated has two components: a current
jy directed across the channel, and a Hall current
jx along the channel axis. As a result of the Hall cur-
rent, there is a transverse velocity component v in
the boundary layer, causing appreciable three-
dimensional effects in the boundary layer on the
insulated walls.

The solution is carried out under the following
assumptions:

1. The plasma stream is steady.

2, The flow is laminar.

3. The plasma is compressible,

4. Rey, « 1. The magnetic field has one compo-
nent along the z axis, and this is a function of x.

5. The Hall coefficient is o =weTe # 0.

The equations describing the boundary layer may
be simplified appreciably by taking into account the
fact that the transverse velocity component v due to
the Hall current is not large, and by omitting terms
of order 6 and less in the equations, the boundary
layer equations may be written as follows:
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Fig. 1. Cross section of the MHD generator
channel.

with boundary conditions

u=v=w=0, T=T,whenz=0,

u—u,(x), w=v->0, T->T,when z ~o. (8)

The system of equations obtained coincides with
that used in Kerrebrock's analysis [1]. We have
managed to eliminate v from (3), and we may there-
fore examine the problem as a plane one, using the
stream function ¥.

From the solution of the problem, in the one-dimen-
sional approximation, of the motion of an inviscid
non-heat-conducting plasma in crossed electric and
magnetic fields, under the condition T = const, the
flow parameters p_(X), U (%), j(X) in the stream
core are determined. We consider that there is no
Hall current in the core, which is possible where
there is an applied electric field along the flow axis

E, = Bex (E, — iz B). )

We transform Egs. (2)—(4) with the help of the
stream core equations
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Substituting (10) and (11) into (2)—(4), and assum-
ingn=1in (6), we obtain
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2. Method of solution. The solution of (2')—(4") is
effected by introducing into the equations the Dorod-
nitsyn variables {1, 3]
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Taking into account the experimental data obtained
in flow of low-temperature plasmas in rectangular
channels, and also the fact that the optimum construc-
tion for generators is a channel in the shape of a
diffuser, the relation u . (x) may be approximated with
a high degree of accuracy by the "one-slope" velocity
profile formula

U (%) = tty (1 — mx) == U, (1 —E),

(13)

where £ « 1,
Let us introduce the stream function ¢, satisfying
the continuity equation (1)
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Following Howaxrth* [2], we shall represent the
stream function as a power series in §:

b =V 2,y 7 U () —(88) 1 () + (882 fa () — -..1.(15)

Similarly, we shall expand the dimensionless tem-
perature O in a series of ascending powers of £:

0 =T/Ts = By(n)— (88) O1(n) + (84) B2 (n) — ... (16)

The stream velocities in the longitudinal and
transverse directions may be written in the form

= ufu, = -;—[fé () —
—(8E)1 (1) + (BERf2 () — .1, (AT )k
0 = vfu, = [—(8E) ry(n) + (BER ra(m) — ... (18)

Auxiliary equations [1] were used in the solution:
for the electrical conductivity through the boun-
dary layer

6 =0Lexp{ —-y[1/6—11} (19)

{where X = ¢/2k, ¢ is the ionization potential of the
relevant alkali metal);

for the Hall coefficient under equilibrium conduc-
tion (19)

B, = B 0. (20)

*In calculating the boundary layers the Howarth
method was used, first applied, as far as we know,
to flow of compressible fluids in a magnetic field by
Genkin [5].

pu= 9y pw=— oy . (14) **Here and below the prime denotes differentiation
0z ox with respect to 7.
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Fig. 2. Dependence of a) u/uw, b) ®, and ¢) j/j., on 1 in the boundary

layer on an insulated wall in a MHD generator channel (x=0.8; K =

= 0.5; fee = 2.5; My =1.0): 1) without allowing for current terms; 2)

allowing for jy and jy; 3) distribution of the transverse electric cur-
rent jy/jm; 4) distribution of Hall current jy/juw.
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The dimensionless electric currents are found
from the expressions
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where K = Ey/uwB is the electromagnetic load factor,
and

fuo =0y (Ey'_umB)' (23}
Following substitution of all the relations used into
(2"-(4", and slight transformations, we obtain

three infinite systems of ordinary differential equa-
tions by equating coefficients of identical powers of
.

1. For the equations of motion in the longitudinal
direction (2')
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2, For the equations of motion in the transverse
direction (31
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3. For the energy equations (4')
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These systems are solved crosswise, Because of
the smallness of £ we may confine attention to the
second approximation.

In the equations we have put

I = [1/(1 4 2w ) exp { — 7 [1/8,— 11}, (32)
T = Bewe [1/(1 - B2 O] (1 — /K) exp{ — 7 [1/6,—11}, (33)

Br = (y — 1) (M7/4).
For simplification in (24)-(31) we have used

o =0wexp | —v[1/8—11), (34)
B, = Bee 0% (35)

For calculation purposes the results obtained may
be improved using (19) and (20).
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To obtain the solutions the wall temperature @,
was assumed to be constant, while the electromagnetic
load factor K may be constant or may be assigned in
the form of a function of channel length.

The boundary conditions which must be satisfied by
the functions

f()v fls f?y .
Tns 6,, 81, 6:, ...

B R T TR
. 9,,

are derived from the general boundary conditions (8),

whenn =0
fO::‘fl:fz:...:fn:O’
fo=fi=fi=...=f.=0,
f1:f2=...=fn=0,
90:8107 ®1=®2=---:®n:0;
when 7 — o
fo>2.0, 1 =025, fa=...=f,—0,
r1=1’2:,.,=rn_>0’

Q> 1.0,0,=0,=...=0,0.

3. Example of calculation, Using the above equa-
tions, we caleulated the thermodynamic, hydrodynamic,
and electrical parameters of a plasma in the boundary
layer on an insulated wall in a MHD generator chan-
nel with the following initial data: the plasma is he-
lium with 1, 5% by weight of cesium; p, = 1.22 atm,
abs; T, =T, =2400° K; m=0,1; B = 2.0 Wb/m?; u_ =
=2800 m/sec; L=1.0m;b=2.2-10"%m, d=5.0"
1072 m; X =7.5; K= 0.5; Ty, = 1440° K; Pr, = 0.7,

Figure 2 shows U, @, iy Jx for the section X = 0, 8
Comparison of the value for plasma longitudinal veloc~
ity U and temperature ® with the values in the ordi-
nary thermal boundary layer, indicates that there is
negligible retardation of the plasma due to electro-
magnetic forces, negligible redistribution of velocity
profile in the boundary layer, and negligible tempera-
ture increase due to joule heating of the plasma.
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The velocity gradients normal to the wall and the
temperatures are increased, leading to increased
friction and heat transfer on the insulated walls. The
relevant expressions may be easily obtained {3, 4].

The transverse velocity v due to the Hall effect is
insignificant because of the weak magnetohydrody-
namic interaction.

It should be noted that the choice of electromag-
netic load factor K and wall temperature @y has a
considerable influence on the distribution of the plas-
ma parameters in the boundary layer.

NOTATION

V(u, v, w)—plasma velocity; p—plasma density; y~dynamic
viscosity; v—kinematic viscosity; Reqp—magnetic Reynolds number;
R—gas constant; p—pressure; Cp—plasma specific heat; A—thermal
conductivity; T—stream temperature; g— free-fall acceleration; B—
magnetic induction; j—electric current density; c—electrical con-
ductivity; Be—Hall coefficient; E~electric field intensity; K—elec-
tromagnetic load factor; k—Boltzmann constant; X— coefficient;
y~stream function; §~magnetodynamic boundary layer thickness;
L, b, and d—length, height, and width of channel; y—adiabatic
exponent; M—Mach number. Subscripts: *~— conditions at initial
section; «—in flow core; w—at wall.
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